Abstract

When the tip of a hair bundle is deflected, the stereocilia pivot as a unit, producing a shearing displacement between adjacent tips. It is not clear how stereocilia can stick together laterally but still shear. We used dissociated hair cells from the bullfrog saccule and high‐speed video imaging to characterize this sliding adhesion. Movement of individual stereocilia was proportional to height, indicating that stereocilia pivot at their basal insertion points. All stereocilia moved by approximately the same angular deflection, and the same motion was observed at 1, 20 and 700 Hz stimulus frequency. Motions were consistent with a geometric model that assumes the stiffness of lateral links holding stereocilia together is >1000 times the pivot stiffness of stereocilia and that these links can slide in the membrane—in essence, that stereocilia shear without separation. The same motion was observed when bundles were moved perpendicular to the tip links, or when tip links, ankle links and shaft connectors were cut, ruling out these links as the basis for sliding adhesion. Stereocilia rootlet angles tend to push stereocilia tips together. However, stereocilia remained cohesive for large deflections, ruling out rootlet prestressing as the basis for sliding adhesion. The horizontal top connectors apparently mediate a sliding adhesion. Consequently, all transduction channels of a hair cell are mechanically in parallel, an arrangement that may enhance amplification in the inner ear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.