Abstract

PurposeVertical take-off is commonly adopted in most insect-mimicking flapping-wing micro air vehicles (FMAV) while insects also adopt horizontal take-off from the ground. The purpose of this paper is to study how insects adjust their attitude in such a short time during horizontal take-off by means of designing and testing an FMAV based on stroke plane modulation.Design/methodology/approachAn FMAV prototype based on stroke plane rotating modulation is built to test the flight performance during horizontal take-off. Dynamic gain and decoupling mixer is added to compensate for the nonlinearity during the rotation angle of the stroke plane getting too large at the beginning of take-off. Force/torque test based on a six-axis sensor validates the change of aerodynamic force and torque at different rotation angles. High-speed camera and motion capture system test the flight performance of horizontal take-off.FindingsStroke plane modulation can provide a great initial pitch toque for FMAV to realize horizontal take-off. But the large range of rotation angles causes nonlinearity and coupling of roll and yaw. A dynamic gain and a mixer are added in the controller, and the FMAV successfully achieves horizontally taking off in less than 1 s.Originality/valueThe research in this paper shows stroke plane modulation is suitable for insect’s horizontal take-off

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call