Abstract
Modern, high-agility aircraft configurations often suffer from tail buffeting at subsonic speeds and medium to high angles of attack. This structural dynamic excitation through the unsteady flow field can result in heavy structural damage and degraded handling qualities. A flexible wind tunnel half model was developed at the Chair of Aerodynamics and Fluid Mechanics of the Technical University of Munich in cooperation with the Department of Acoustics and Vibration of Airbus Defence and Space. To provide enough flexibility, the wing and horizontal tail plane (HTP) are 3D-printed from polylactide (PLA). The model is used to experimentally analyze buffeting and to validate computational buffeting prediction. The objective of the present work is to examine aeroelastic phenomena with the modular designed flexible wind tunnel model. The measurement campaign takes place at the Göttingen type wind tunnel A. The model is equipped with various sensors. For unsteady pressure measurements on the surface of the wing and the HTP, piezo-resistive Kulite pressure transducers are installed on the wing and on the HTP. In addition, the flow field is described on the basis of numerical simulation results. For analyzing the structural response resulting from buffeting, miniature accelerometers are installed at the tips of the wing and the HTP. Strain gauges are used for calculating bending strains. As a reference case, a fully aluminum model is equipped correspondingly, but without strain gauges. Dominant frequencies corresponding to the structural eigenmodes can be identified and are excited in the PLA-setup (Buffeting). The unsteady pressure fluctuations on the surfaces act as the aerodynamic excitation input (Buffet). The measured tip accelerations of wing and tail are compared to simulation results with a one-way coupling CFD-CSM simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.