Abstract

Numerical experiments on studying the spatial fields and evolution of viscous overlithostatic horizontal stresses and pressure in the mantle and in the moving continent are carried out. The continent moves consistently with time-dependent forces, which act from the viscous mantle. By introducing the varying viscosity, we gain the possibility for taking into account the oceanic lithosphere and the difference between the viscosity of the upper and the lower mantle in the context of a purely viscous model. The typical overlithostatic horizontal stresses in the main part of the mantle are ±(7–9) MPa (70–90 bar); in the highly viscous regions and, particularly, in the subduction zones they are at least three times larger. The descending mantle flows in the depth interval from approximately 50 km to about 300 km are more sharply pronounced in the pressure field than in the field of horizontal stresses. At the considered stages of motion and in different parts, the continent is characterized by the following typical values of stresses: the overlithostatic pressure ranges from −5 to +15 MPa; the horizontal overlithostatic tensile stress amounts up to −4MPa (−40 bar); and the compressive stress in case of the overriding of the subduction zone attains +35 MPa (350 bar).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.