Abstract
In this paper the feasibility of feeding a horizontal pneumatic conveying line directly from a fluidized bed is explored by investigating the relationships governing the solids mass flow rate in such a pipe as a function of both pressure drop and pipe length. Three different materials were fluidized by air and discharged though a 25 mm internal diameter pipe. Materials used were turnip seeds of mean diameter 1.5 mm, carbon steel shot of mean diameter 0.73 mm and plastic pellets of mean diameter 3.76 mm. Several pipe lengths were used, from 0.75 to 1.77 m. The experiments showed that it is feasible to feed directly from a fluidized bed to a horizontal pneumatic conveying line. The flow regime in the pipe was that of dense phase conveying also called slug flow. The data collected show that there is a clear relationship between the pressure drop down the conveying line and the discharge rate of solids from the line. The discharge rate is also dependent on the pipe length. In previous studies of pneumatic conveying, the solids and gas mass flow rates have been independently set, which cannot be done if the conveying line is fed from a fluidized bed. For a pipe fed from a fluidized bed, the solid and gas mass ratio are coupled and this was modelled using the theory for air-augmented granular discharge through an orifice in a hopper or silo of Nedderman et al. [1983. The effect of interstitial air pressure gradients on the discharge from bins. Powder Technology 35, 69–81], but as modified by Thorpe [1984. Air-augmented flow of granular materials through orifices. Ph.D. Thesis, University of Cambridge] for horizontal discharge. This was then combined with a modification of the theory of Konrad [1981. Ph.D. Dissertation, University of Cambridge] to give a prediction of the total pressure drop and the gas and solid mass flow rates. This combined model for dense-phase conveying from a fluidized bed was found to give an excellent fit to the data using the standard values for the constants in every equation. The predictions of the combined model also agree well with the experiments of Konrad [1981. Ph.D. Dissertation, University of Cambridge] for discharge from a hopper into a horizontal conveying line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.