Abstract
We evaluated the human binocular response to roll motion in the dark and during visual fixation with horizontal convergence. Six normal human subjects were exposed to manually driven, whole-body rotation about an earth-vertical, naso-occipital axis, under two conditions: (I) oscillation at 0.4 Hz (peak velocity 69+/-3.8 degree/s) in the dark, and whilst fixating an axial light-emitting diode at 48 cm ('near') and at 206 cm ('far'); (II) constant velocity rotation (56.5+/-3.1 degree/s) for 40 s, clockwise and counter-clockwise, in the dark, and sudden stops. Eye and head movements were monitored using scleral search coils. In head-fixed, angular velocity coordinates roll motion always evoked conjugate ocular torsion, with small conjugate horizontal and disconjugate vertical components. The resultant binocular eye responses were rotations about convergent axes. During oscillation with target fixation the convergence of the rotation axes was larger than that predicted by target geometry, producing disconjugate oscillations of vertical gaze about the target ('skewing'). Fast-phase eye movements were primarily resetting rotations about the same convergent rotation axes as the slow phases, but the small vertical velocity components had oscillatory, asymmetrical profiles. In response to velocity steps the slow-phase eye velocity decayed exponentially with time constants of 4.5+/-1.5 s for the torsional component and 5.8+/-1.9 s for the 'vertical vergence' component (right eye-left eye recordings). We conclude that in normal human subjects dynamic vertical canal stimulation with horizontal gaze convergence evokes rotation of the eyes about convergent axes and a small skewing of the eyes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.