Abstract

In this study, we are concerned with the optimization of fuzzy clustering (Fuzzy C-Means) on the basis of a collection of distributed datasets without violating data confidentiality and security. The optimization of fuzzy clusters is realized using the differential evolution algorithm in a federated learning environment. Fuzzy clustering plays an important role in revealing the underlying structure of a given dataset. However, traditional iterative method is easy to get stuck at local optimum. With the growing concerning on data confidentiality and security, how to reveal the underlying structure of the data that are stored locally across different sites is becoming an urgent problem. In order to overcome these two obstacles, we propose a federated differential evolution algorithm to realize fuzzy clustering. We augment the well-known differential evolution algorithm such that it can work in a federated learning environment to ensure local data privacy. The design practice of the federated differential evolution is elaborated on by highlighting its effectiveness in finding the optimal fuzzy clusters on the basis of distributed datasets. The performance of the proposed method is compared with traditional fuzzy clustering algorithm. Experimental studies completed on a series of real-world datasets coming from machine learning repository are reported to demonstrate the superiority of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.