Abstract

This paper investigates the interaction effect of horizontal fast harmonic parametric excitation and time delay on self-excited vibration in van der Pol oscillator. We apply the method of direct partition of motion to derive the main autonomous equation governing the slow dynamic of the oscillator. The method of averaging is then performed on the slow dynamic to obtain a slow flow which is analyzed for equilibria and periodic motion. This analysis provides analytical approximations of regions in parameter space where periodic self-excited vibrations can be eliminated. A numerical study is performed on the original oscillator and compared to analytical approximations. It was shown that in the delayed case, horizontal fast harmonic excitation can eliminate undesirable self-excited vibrations for moderate values of the excitation frequency. In contrast, the case without delay requires large excitation frequency to eliminate such motions. This work has application to regenerative behavior in high-speed milling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.