Abstract

The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated. Governing equations of the pile-soil system are established based on elastodynamics. Three-dimensional wave equations of soil are decoupled through differential transformation and variable separation. Consequently, expressions of soil displacements and horizontal resistances can be obtained. An analytical solution of the pile is derived based on continuity conditions between the pile and soil, subsequently from which expressions of the complex impedances are deduced. Analyses are carried out to examine the second-order effect of axial force on the horizontal vibrating behavior of the pipe pile. Some conclusions can be summarized as follows: stiffness and damping factors are decreased with the application of axial force on the pile head; distributions of the pile horizontal displacement and rotation angle are regenerated due to the second-order effect of the applied axial force; and redistributions of the bending moment and shearing force occur due to the second-order effect of the applied axial force.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.