Abstract

This paper aims to study the effects of the non-stationary soil property on the horizontal bearing capacity of three-dimensional monopile in spatially variable soils. The soil undrained shear strength is assumed to obey lognormal distribution and is simulated as non-stationary random fields. The mean value of the undrained shear strength linearly increases with depth, while the standard deviation keeps constant. The random finite-element method is applied to analyze the reliability of the bearing capacity. The influence of the correlations and non-stationary property on the mean and coefficient of variation of the bearing capacity are discussed. It is found that the correlation distance has no obvious effect on the bearing capacity and the bearing capacity increases with the increase of non-stationary coefficient. The results can guide the reliability-based design of horizontally loaded piles embedded in spatially variable soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.