Abstract

The performance of a horizontal axis wind turbine continuously operating at its maximum power coefficient was evaluated by a calculation code based on Blade Element Momentum (BEM) theory. It was then evaluated for performance and Annual Energy Production (AEP) at a constant standard rotational velocity as well as at a variable velocity but at its maximum power coefficient. The mathematical code produced a power coefficiency curve which showed that notwithstanding further increases in rotational velocity a constant maximum power value was reached even as wind velocity increased. This means that as wind velocity varies there will always be a rotational velocity of the turbine which maximises its coefficient. It would be sufficient therefore to formulate the law governing the variation in rotational velocity as it varied with wind velocity to arrive at a power coefficient that is always the same and its maximum. This work demonstrates the methodology for determining the law governing the rotational velocity of the rotor and it highlights the advantages of a wind turbine whose power coefficient is always at maximum rather than very variable in line with the variation of wind velocity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.