Abstract

The nanotube/dielectric interface plays an essential role in achieving superb switching characteristics of carbon nanotube-based transistors for energy-efficient computation. Formation of van der Waals heterostructures with hexagonal boron nitride nanotubes could be an effective means to reduce interface state density, but the need for isolating nanotubes during the formation of coaxial outer layers has hindered the fabrication of their horizontal arrays. Here, we develop a strategy to create isolated heterostructure arrays using aligned carbon nanotubes grown on a quartz substrate as starting materials. Air-suspended arrays of carbon nanotubes are prepared by a dry transfer technique and then used as templates for the coaxial wrapping of boron nitride nanotubes. We then fabricate the transistors, where boron nitride serves as interfacial layers between carbon nanotube channels and conventional gate dielectrics, showing hysteresis-free characteristics owing to the improved interfaces. We have also gained a deeper understanding of the strain applied on inner carbon nanotubes, as well as the inhomogeneity of the outer coating, by characterizing individual heterostructures over trenches and on a substrate surface. The device fabrication and characterization presented here essentially do not require elaborate electron microscopy, thus paving the way for the practical use of one-dimensional van der Waals heterostructures for nanoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.