Abstract

For binary systems of corotating black holes, the zeroth law of black hole mechanics states that the surface gravity is constant over each component of the horizon. Using the approximation of a conformally flat spatial metric, we compute sequences of quasi-equilibrium initial data for corotating black hole binaries with irreducible mass ratios in the range . For orbits outside the innermost stable one, the surface gravity is found to be constant on each component of the apparent horizon at the sub-percent level. We compare those numerical results to the analytical predictions from post-Newtonian theory at the fourth (4PN) order and from black hole perturbation theory to linear order in the mass ratio. We find a remarkably good agreement for all mass ratios considered, even in the strong-field regime. In particular, our findings confirm that the domain of validity of black hole perturbative calculations appears to extend well beyond the extreme mass-ratio limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.