Abstract
We consider a metric which describes Bañados geometries and show that the considered metric is a solution of the generalized minimal massive gravity (GMMG) model. We consider the Killing vector field which preserves the form of the considered metric. Using the off-shell quasi-local approach we obtain the asymptotic conserved charges of the given solution. Similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model, we also show that the algebra among the asymptotic conserved charges is isomorphic to two copies of the Virasoro algebra. Eventually, we find a relation between the algebra of the near-horizon and the asymptotic conserved charges. This relation shows that the main part of the horizon fluffs proposed by Afshar et al., Sheikh-Jabbari and Yavartanoo appear for generic black holes in the class of Bañados geometries in the context of the GMMG model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.