Abstract

An analytical model of thermally stimulated photoluminescence (TSPL) in a random hopping system is formulated. The model is based on the assumption that TSPL originates from radiative recombination of sufficiently long geminate pairs of charge carriers created during photoexcitation of the sample at a low (helium) temperature. Since TSPL measurements are normally performed after some dwell time the initial energy distribution of localized carriers is formed after low-temperature hopping relaxation of photogenerated carriers and, therefore, first thermally assisted jumps of relaxed carriers are considered as rate-limiting steps in the present model. Predictions of the model are found to be in good quantitative agreement with experimental data on molecularly doped polymers if a double-peak energy distribution of localized states is invoked for these materials. Comparing theoretical results with existing experimental data also reveals a somewhat slower low-temperature energy relaxation of charge carriers in these materials than predicted by the conventional theory of carrier random walk in random hopping systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.