Abstract

We have investigated the slow dynamics of ultrasoft particles in crystalline cluster phases, where point particles interact through the generalized exponential potential u(r) = e exp[−(r/σ)n], focusing on the cluster fcc phase of this model with n = 4. In an effort to elucidate how the mechanisms of mass transport depend on the microscopic dynamics and in order to mimic a realistic scenario in a related experiment we have performed molecular dynamics, Brownian dynamics, and Monte Carlo simulations. In molecular dynamics simulations the diffusion of particles proceeds through long-range jumps, guided by strong correlations in the momentum direction. In Monte Carlo and Brownian dynamics simulations jump events are short-ranged, reflecting the purely configurational nature of the dynamics. In contrast to what was found in models of glass-forming liquids, the effect of Newtonian and stochastic microscopic dynamics on the long-time relaxation cannot be accounted for by a temperature-independent rescaling of the time units. From the obvious qualitative discrepancies in the short time behavior between the three simulation methods and the non-trivial difference in jump length distributions, long time relaxation, and dynamic heterogeneity, we learn that a more complex modeling of the dynamics in realistic systems of ultrasoft colloids is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.