Abstract

Widely known for their uses in displays and electro-optics, liquid crystals are more than just technological marvels. They vividly reveal the topology and structure of various solitonic and singular field configurations, often markedly resembling the ones arising in many field theories and in the areas ranging from particle physics to optics, hard condensed matter and cosmology. In this review, we focus on chiral nematic liquid crystals to show how these experimentally highly accessible systems provide valuable insights into the structure and behavior of fractional, full, and multi-integer two-dimensional skyrmions, dislocations and both abelian and non-abelian defect lines, as well as various three-dimensionally localized, often knotted structures that include hopfions, heliknotons, torons and twistions. We provide comparisons of some of these field configurations with their topological counterparts in chiral magnets, discussing close analogies between these two condensed matter systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call