Abstract

We investigate the application of Hopfield neural networks (HNN's) to the problem of multiuser detection in spread spectrum/CDMA (code division multiple access) communication systems. It is shown that the NP-complete problem of minimizing the objective function of the optimal multiuser detector (OMD) can be translated into minimizing an HNN "energy" function, thus allowing to take advantage of the ability of HNN's to perform very fast gradient descent algorithms in analog hardware and produce in real-time suboptimal solutions to hard combinatorial optimization problems. The performance of the proposed HNN receiver is evaluated via computer simulations and compared to that of other suboptimal schemes as well as to that of the OMD for both the synchronous and the asynchronous CDMA transmission cases. It is shown that the HNN detector exhibits a number of attractive properties and that it provides a powerful generalization of a well-known and extensively studied suboptimal scheme, namely the multistage detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.