Abstract

We present a Hopfield-like autoassociative network for memories representing examples of concepts. Each memory is encoded by two activity patterns with complementary properties. The first is dense and correlated across examples within concepts, and the second is sparse and exhibits no correlation among examples. The network stores each memory as a linear combination of its encodings. During retrieval, the network recovers sparse or dense patterns with a high or low activity threshold, respectively. As more memories are stored, the dense representation at low threshold shifts from examples to concepts, which are learned from accumulating common example features. Meanwhile, the sparse representation at high threshold maintains distinctions between examples due to the high capacity of sparse, decorrelated patterns. Thus, a single network can retrieve memories at both example and concept scales and perform heteroassociation between them. We obtain our results by deriving macroscopic mean-field equationsthat yield capacity formulas for sparse examples, dense examples, and dense concepts. We also perform simulations that verify our theoretical results and explicitly demonstrate the capabilities of the network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.