Abstract
The zx-calculus and related theories are based on so-called interacting Frobenius algebras, where a pair of dagger-special commutative Frobenius algebras jointly form a pair of Hopf algebras. In this setting we introduce a generalisation of this structure, Hopf-Frobenius algebras, starting from a single Hopf algebra which is not necessarily commutative or cocommutative. We provide a few necessary and sufficient conditions for a Hopf algebra to be a Hopf-Frobenius algebra, and show that every Hopf algebra in the category of finite dimensional vector spaces is a Hopf-Frobenius algebra. In addition, we show that this construction is unique up to an invertible scalar. Due to this fact, Hopf-Frobenius algebras provide two canonical notions of duality, and give us a "dual" Hopf algebra that is isomorphic to the usual dual Hopf algebra in a compact closed category. We use this isomorphism to construct a Hopf algebra isomorphic to the Drinfeld double, but has a much simpler presentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.