Abstract

Simple explicit estimates are presented for the viscosity solution of the Cauchy problem for the Hamilton--Jacobi equation where either the Hamiltonian or the initial data are the sum of a convex and a concave function. The estimates become equalities whenever a "minmax" equals a "maxmin" and thus a representation formula for the solution is obtained, generalizing the classical Hopf formulas as well as some formulas of Kruzkov [Functional Anal. Appl., 2 (1969), pp. 128--136].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.