Abstract
By means of a certain module V and its tensor powers in a finite tensor category, we study a question of whether the depth of a Hopf subalgebra R of a finite-dimensional Hopf algebra H is finite. The module V is the counit representation induced from R to H, which is then a generalized permutation module, as well as a module coalgebra. We show that if in the subalgebra pair either Hopf algebra has finite representation type, or V is either semisimple with R∗ pointed, projective, or its tensor powers satisfy a Burnside ring formula over a finite set of Hopf subalgebras including R, then the depth of R in H is finite. One assigns a nonnegative integer depth to V, or any other H-module, by comparing the truncated tensor algebras of V in a finite tensor category and so obtains upper and lower bounds for depth of a Hopf subalgebra. For example, a relative Hopf restricted module has depth 1, and a permutation module of a corefree subgroup has depth less than the number of values of its character.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.