Abstract

The commutative Hopf monoid of set compositions is a fundamental Hopf monoid internal to vector species, having undecorated bosonic Fock space the combinatorial Hopf algebra of quasisymmetric functions. We construct a geometric realization of this Hopf monoid over the adjoint of the (essentialized) braid hyperplane arrangement, which identifies the monomial basis with signed characteristic functions of the interiors of permutohedral tangent cones. We show that the indecomposable quotient Lie coalgebra is obtained by restricting functions to chambers of the adjoint arrangement, i.e., by quotienting out the higher codimensions. The resulting functions are characterized by the Steinmann relations of axiomatic quantum field theory, demonstrating an equivalence between the Steinmann relations, tangent cones to (generalized) permutohedra, and having algebraic structure internal to species. Our results give a new interpretation of a construction appearing in the mathematically rigorous formulation of renormalization by Epstein–Glaser, called causal perturbation theory. In particular, we show that operator products of time-ordered products correspond to the H-basis of the cocommutative Hopf monoid of set compositions, and generalized retarded products correspond to a spanning set of its primitive part Lie algebra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.