Abstract

We introduce two Hopf algebroids associated to a proper and holomorphic Lie group action on a complex manifold. We prove that the cyclic cohomology of each Hopf algebroid is equal to the Dolbeault cohomology of invariant differential forms. When the action is cocompact, we develop a generalized complex Hodge theory for the Dolbeault cohomology of invariant differential forms. We prove that every cyclic cohomology class of these two Hopf algebroids can be represented by a generalized harmonic form. This implies that the space of cyclic cohomology of each Hopf algebroid is finite dimensional. As an application of the techniques developed in this paper, we generalize the Serre duality and prove a Kodaira type vanishing theorem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call