Abstract

<p style='text-indent:20px;'>In this paper, we consider the Shigesada–Kawasaki–Teramoto (SKT) model, which presents cross-diffusion terms describing competition pressure effects. Even though the reaction part does not present the activator–inhibitor structure, cross-diffusion can destabilise the homogeneous equilibrium. However, in the full cross-diffusion system and weak competition regime, the cross-diffusion terms have an opposite effect and the bifurcation structure of the system modifies as the interspecific competition pressure increases. The major changes in the bifurcation structure, the type of pitchfork bifurcations on the homogeneous branch, as well as the presence of Hopf bifurcation points are here investigated. Through weakly nonlinear analysis, we can predict the type of pitchfork bifurcation. Increasing the additional cross-diffusion coefficients, the first two pitchfork bifurcation points from super-critical become sub-critical, leading to the appearance of a multi-stability region. The interspecific competition pressure also influences the possible appearance of stable time-period spatial patterns appearing through a Hopf bifurcation point.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.