Abstract
A delayed Lotka–Volterra two-species predator–prey system with discrete hunting delay and distributed maturation delay for the predator population described by an integral with a strong delay kernel is considered. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the asymptotic stability of the positive equilibrium is investigated and Hopf bifurcations are demonstrated. It is found that under suitable conditions on the parameters the positive equilibrium is asymptotically stable when the hunting delay is less than a certain critical value and unstable when the hunting delay is greater than this critical value. Meanwhile, according to the Hopf bifurcation theorem for functional differential equations (FDEs), we find that the system can also undergo a Hopf bifurcation of nonconstant periodic solution at the positive equilibrium when the hunting delay crosses through a sequence of critical values. In particular, by applying the normal form theory and the center manifold reduction for FDEs, an explicit algorithm determining the direction of Hopf bifurcations and the stability of bifurcating periodic solutions occurring through Hopf bifurcations is given. Finally, to verify our theoretical predictions, some numerical simulations are also included at the end of this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.