Abstract
We consider the dynamics of a two-dimensional ordinary differential equation exhibiting a Hopf bifurcation subject to additive white noise and identify three dynamical phases: (I) a random attractor with uniform synchronisation of trajectories, (II) a random attractor with non-uniform synchronisation of trajectories and (III) a random attractor without synchronisation of trajectories. The random attractors in phases (I) and (II) are random equilibrium points with negative Lyapunov exponents while in phase (III) there is a so-called random strange attractor with positive Lyapunov exponent.We analyse the occurrence of the different dynamical phases as a function of the linear stability of the origin (deterministic Hopf bifurcation parameter) and shear (amplitude-phase coupling parameter). We show that small shear implies synchronisation and obtain that synchronisation cannot be uniform in the absence of linear stability at the origin or in the presence of sufficiently strong shear. We provide numerical results in support of a conjecture that irrespective of the linear stability of the origin, there is a critical strength of the shear at which the system dynamics loses synchronisation and enters phase (III).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.