Abstract

Hopf bifurcation theory for an oscillator subject to a weak feedback but a large delay is investigated for a specific laser system. The problem is motivated by semiconductor laser instabilities which are initiated by undesirable optical feedbacks. Most of these instabilities start from a single Hopf bifurcation. Because of the large delay, a delayed amplitude appears in the slow time bifurcation equation which generates new bifurcations to periodic and quasi-periodic states. We determine analytical expressions for all branches of periodic solutions and show the emergence of secondary bifurcation points from double Hopf bifurcation points. We study numerically different cases of bistability between steady, periodic, and quasi-periodic regimes. Finally, the validity of the Hopf bifurcation approximation is investigated numerically by comparing the bifurcation diagrams of the original laser equations and the slow time amplitude equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.