Abstract
A three-layer prey-predator model with two time-delays and one delay-dependent parameter is established in this paper. To begin, the paper calculates the conditions for each population in the model to maintain the quantity stable and Hopf bifurcation when τ = τ = 0, τ = 0 , τ ≠ 0, τ is in the stable interval, and τ > 0. The crossing curves, their type, and the direction of the crossing curves are then obtained using the crossing curve method, which is composed of the threshold values of the dynamic behavior change on the two time-delays plane when τ , τ > 0. The real data from the forage grass-Ochotona curzoniae-Buteo hemilasius food chain is used to conduct an empirical study of the model. When τ , τ > 0, the feasible region of the crossing curves is open-ended, and the model's crossing curves on the ( τ , τ ) plane are truncated. This indicates that the model's threshold distribution of dynamic behavior change is a regular curve made of several curves. The simulation using the time-delay value on the crossing curves shows that the model produces different dynamic behaviors such as stability, bifurcation, and chaos depending on the time-delay value on both sides of the curves. The critical values of dynamic behavior change are time-delay values on the crossing curves. The empirical study shows that increasing Ochotona curzoniae's environmental capacity can easily cause Hopf bifurcation of the system. At this time, the number of each population in the Plateau ecosystem constantly fluctuates, and Ochotona curzoniae is vulnerable to extinction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.