Abstract

The paper establish and investigate an HIV-1 virus model with logistic growth, which also has intracellular delay and humoral immunity delay. The local stability of feasible equilibria are established by analyzing the characteristic equations. The globally stability of infection-free equilibrium and immunity-inactivated equilibrium are studied using the Lyapunov functional and LaSalles invariance principle. Besides, we prove that Hopf bifurcation will occur when the humoral immune delay pass through the critical value. And the stability of the positive equilibrium and Hopf bifurcations are investigated by using the normal form theory and the center manifold theorem. Finally, we confirm the theoretical results by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.