Abstract

In this paper, we investigate an epidemic model with quarantine and recovery-age effects. Reformulating the model as an abstract nondensely defined Cauchy problem, we discuss the existence and uniqueness of solutions to the model and study the stability of the steady state based on the basic reproduction number. After analyzing the distribution of roots to a fourth degree exponential polynomial characteristic equation, we also derive the conditions of Hopf bifurcation. Numerical simulations are performed to illustrate the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.