Abstract

By applying a geometrical scheme developed to tackle the eigenvalue problem of delay differential equations with multiple time delays, Hopf bifurcation of Hopfield neuron model is analyzed in two-parameter space. By the introduction of two new angles, the calculation of imaginary roots is carried out analytically and effectively. By increasing the parameter to cross over the Hopf bifurcation lines, the stability switching direction is confirmed. The method is a useful tool to show the partition of stable and unstable regions in two-parameter space and detect double Hopf bifurcation further. The typified dynamical behaviors based on nearby double Hopf points are analyzed by applying the normal form technique and center manifold method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.