Abstract

In this brief the dynamic behavior of a parametrically forced manipulator, or pendulum, system with PD control is examined. For an excitation of sufficient amplitude or frequency a Hopf bifurcation to a steady-state limit cycle is shown to result, appearing as a precursor to instability. The parameter space is mapped in order to illustrate regions where control failure will likely occur, even in the strongly damped case. For weakly damped systems, the Hopf bifurcation can additionally exhibit a dependence on initial conditions. The resulting case of competing point and periodic attractors is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.