Abstract

In this paper, we introduce and deal with the delayed nutrient-microorganism model with a random network structure. By employing time delay τ as the main critical value of the Hopf bifurcation, we investigate the direction of the Hopf bifurcation of such a random network nutrient-microorganism model. Noticing that the results of the direction of the Hopf bifurcation in a random network model are rare, we thus try to use the method of multiple time scales (MTS) to derive amplitude equation and determine the direction of the Hopf bifurcation. It is showed that the delayed random network nutrient-microorganism model can exhibit a supercritical or subcritical Hopf bifurcation. Numerical experiments are performed to verify the validity of the theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.