Abstract

The dynamics of a diffusive Lotka–Volterra type model for two species with nonlocal delay effect and Dirichlet boundary conditions is investigated in this paper. The existence and multiplicity of spatially nonhomogeneous steady-state solutions are obtained by means of Lyapunov–Schmidt reduction. The stability of spatially nonhomogeneous steady-state solutions and the existence of Hopf bifurcation with the changes of the time delay are obtained by analyzing the distribution of eigenvalues of the infinitesimal generator associated with the linearized system. By the normal form theory and the center manifold reduction, the stability and bifurcation direction of Hopf bifurcating periodic orbits are derived. Finally, our theoretical results are illustrated by a model with homogeneous kernels and one-dimensional spatial domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.