Abstract

In this paper, we examine the stability of an endemic equilibrium in a chronological age-structured SIR (susceptible, infectious, removed) epidemic model with age-dependent infectivity. Under the assumption that the transmission rate is a shifted exponential function, we perform a Hopf bifurcation analysis for the endemic equilibrium, which uniquely exists if the basic reproduction number is greater than 1. We show that if the force of infection in the endemic equilibrium is equal to the removal rate, then there always exists a critical value such that a Hopf bifurcation occurs when the bifurcation parameter reaches the critical value. Moreover, even in the case where the force of infection in the endemic equilibrium is not equal to the removal rate, we show that if the distance between them is sufficiently small, then a similar Hopf bifurcation can occur. By numerical simulation, we confirm a special case where the stability switch of the endemic equilibrium occurs more than once.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.