Abstract
In the machining process, unstable self-excited vibrations known as regenerative chatter can occur, causing excessive tool wear or failure, and a poor surface finish on the machined workpiece, hence the relevant measures must be taken to predict and avoid this phenomenon of instability. In this paper, we propose a weakly nonlinear model with square and cubic terms in both structural stiffness and regenerative terms, to represent self-excited vibrations in machining. It is proved that Hopf bifurcation exists when bifurcation parameter equals a critical value, a formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are given by using the normal form method and center manifold theorem. Numerical simulations show excellent agreement with the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.