Abstract

To overcome the shortage of traditional rear axle compliance steering (RACS) technology, a kind of viscoelastic smart material is introduced into the rear suspension of a vehicle to construct rear wheel semiactive steering system. This article focuses on the nonlinear dynamic behavior of the vehicle with RACS incorporating viscoelastic smart material. First of all, considering the tire nonlinearity and the fractional derivative constitutive relation of the viscoelastic material, the nonlinear dynamic model of the vehicle with RACS is formulated. Then, the lateral dynamic behavior of the vehicle with RACS is demonstrated through numerical experiments. Finally, some factors that influence shimmy of the compliance steering wheel are investigated. Numerical results demonstrate the Hopf bifurcation characteristics of the vehicle with RACS and disclose the influence factors of Hopf bifurcation characteristics for the vehicle with RACS, which lay the theoretical foundation for the development of the rear wheel semiactive steering technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.