Abstract

In this paper, we analyze the stability and Hopf bifurcation of the biological economic system based on the new normal form and the Hopf bifurcation theorem. The basic model we consider is owed to a ratio-dependent predator–prey system with harvesting, compared with other researches on dynamics of predator–prey population, this system is described by differential-algebraic equations due to economic factor. Here μ as bifurcation parameter, it is found that periodic solutions arise from stable stationary states when the parameter μ increases close to a certain limit. Finally, numerical simulations illustrate the effectiveness of our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.