Abstract

In this essay, we introduce a bioeconomic predator–prey model which incorporates the square root functional response and nonlinear prey harvesting. Due to the introduction of nonlinear prey harvesting, the model demonstrates intricate dynamic behaviors in the predator–prey plane. Economic profit serves as a bifurcation parameter for the system. The stability and Hopf bifurcation of the model are discussed through normal forms and bifurcation theory. These results reveal richer dynamic features of the bioeconomic predator–prey model which incorporates the square root functional response and nonlinear prey harvesting, and provides guidance for realistic harvesting. A feedback controller is introduced in this paper to move the system from instability to stability. Moreover, we discuss the biological implications and interpretations of the findings. Finally, the results are validated by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.