Abstract
A new SEIRS epidemic model with nonlinear incidence rate and nonpermanent immunity is presented in the present paper. The fact that the incidence rate per infective individual is given by a nonlinear function and product of rational powers of two state variables, as well as the introduction of an epidemic-induced death rate, leads to a more realistic modeling of the physical problem itself. A stability analysis is performed and the features of Hopf bifurcation are investigated. Both the corresponding critical regions in the parameter space and their stability characteristics are presented. Furthermore, by using algorithms based on a new symbolic form as regards the restriction of an n-dimensional nonlinear parametric system to the center manifold and the normal forms of the corresponding Hopf bifurcation, as well, the associated bifurcation diagram is derived, and finally various emerging limit cycles are numerically obtained by appropriate implemented methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematics and Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.