Abstract

It has recently become evident that categories of representations ofHopf algebrasprovide fundamental examples of monoidal categories. In this expository paper, we examine such categories as models of (multiplicative) linear logic. By varying the Hopf algebra, it is possible to model several variants of linear logic. We present models of the original commutative logic, the noncommutative logic of Lambek and Abrusci, the braided variant due to the author, and the cyclic logic of Yetter. Hopf algebras provide a unifying framework for the analysis of these variants. While these categories are monoidal closed, they lack sufficient structure to model the involutive negation of classical linear logic. We recall work of Lefschetz and Barr in which vector spaces are endowed with an additional topological structure, calledlinear topology. The resulting category has a large class of reflexive objects, which form a *-autonomous category, and so model the involutive negation. We show that the monoidal closed structure of the category of representations of a Hopf algebra can be extended to this topological category in a natural and simple manner. The models we obtain have the advantage of being nondegenerate in the sense that the two multiplicative connectives, tensor and par, are not equated. It has been recently shown by Barr that this category of topological vector spaces can be viewed as a subcategory of a certain Chu category. In an Appendix, Barr uses this equivalence to analyze the structure of its tensor product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.