Abstract

We consider the absolute worst case time complexity for Hopcroft's minimization algorithm applied to unary languages (or a modification of this algorithm for cover automata minimization). We show that in this setting the worst case is reached only for deterministic automata or cover automata following the structure of the de Bruijn words. We refine a previous result by showing that the Berstel/Carton example reported before is actually the absolute worst case time complexity in the case of unary languages for deterministic automata. We show that the same result is valid also when considering the setting of cover automata and an algorithm based on the Hopcroft's method used for minimization of cover automata. We also show that a LIFO implementation for the splitting list is desirable for the case of unary languages in the setting of deterministic finite automata.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.