Abstract

We consider source-initiated broadcast session traffic in an ad hoc wireless network operating under a hard constraint on the end-to-end delay between the source and any node in the network. We measure the delay to a given node in the number of hops data travels from the source to that node, and our objective in this paper is to construct an energy-efficient broadcast tree that has a maximum depth Delta, where Delta; represents the end-to-end hop constraint in the network. We characterize the optimal solution to a closely related problem in massively dense networks using a dynamic programming formulation. We prove that the optimal solution can be obtained by an algorithm of polynomial time complexity O(Delta2). The solution to the dynamic program indicates that there is a single optimal policy applicable to all massively dense networks. Elaborating on the insights provided by the structure of the problem in massively dense networks, we design an algorithm for finding a solution to the hop constrained minimum power broadcasting problem in general networks. By extensive simulations, we demonstrate that our proposed optimization-based algorithm generates broadcast trees within 20% of optimality for general dense networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.