Abstract

Black hole dominance, assumed to be a fairly ubiquitous feature of any theory of quantum gravity, amounts to that any observer trying to perform a localized experiment on ever smaller length scales will ultimately be thwarted by the formation of a trapped surface within the spatial domain of the experiment. The argument based on Thorne's hoop conjecture, conjointly leads to a fundamental length scale in physics. Black hole dominance also suggests that ordinary field theory cannot be used to describe quantum gravity in the extreme UV, contrary to implications of asymptotic safety. We re-examine black hole dominance in an asymptotically safe scenario, in the presence of higher curvature terms an with running couplings, by modifying a proof of Thorne's hoop conjecture. We find that the proof falls apart, and along with it, so does the argument for a mandatory formation of a trapped surface inside the domain of the experiment. However, neither is there a contrary proof that local trapped surfaces do not form. Instead in this approach whether an observer can perform local measurements in arbitrary small regions of spacetime depends on the specific values of the couplings near the UV fixed point. In this sense there is no all pervasive local version of the minimal length argument. However, we argue that one trapped surface must still form outside an experiment, when the domain of this experiment is localized to scales much smaller than the Planck length. This enshrouding horizon then prevents any information from reaching observers at infinity, thus retaining a vestige of "asymptotic darkness" for them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call