Abstract

The use of memory forensics is becoming commonplace in digital investigation and incident response, as it provides critically important capabilities for detecting sophisticated malware attacks, including memory-only malware components. In this paper, we concentrate on improving analysis of API hooks, a technique commonly employed by malware to hijack the execution flow of legitimate functions. These hooks allow the malware to gain control at critical times and to exercise complete control over function arguments and return values. Existing techniques for detecting hooks, such the Volatility plugin apihooks, do a credible job, but generate numerous false positives related to non-malicious use of API hooking. Furthermore, deeper analysis to determine the nature of hooks detected by apihooks typically requires substantial skill in reverse engineering and an extensive knowledge of operating systems internals. In this paper, we present a new, highly configurable tool called hooktracer, which eliminates false positives, provides valuable insight into the operation of detected hooks, and generates portable signatures called hook traces, which can be used to rapidly investigate large numbers of machines for signs of malware infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.