Abstract

ObjectiveSirtuin 3 (SIRT3) plays a vital role in regulating oxidative stress in tissue injury. The aim of this study was to evaluate the radioprotective effects of honokiol (HKL) in a zebrafish model of radiation-induced brain injury and in HT22 cells.MethodsThe levels of reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) were evaluated in the zebrafish brain and HT22 cells. The expression levels of SIRT3 and cyclooxygenase-2 (COX-2) were measured using western blot assays and real-time polymerase chain reaction (RT-PCR).ResultsHKL treatment attenuated the levels of ROS, TNF-α, and IL-1β in both the in vivo and in vitro models of irradiation injury. Furthermore, HKL treatment increased the expression of SIRT3 and decreased the expression of COX-2. The radioprotective effects of HKL were achieved via SIRT3 activation.ConclusionsHKL attenuated oxidative stress and pro-inflammatory responses in a SIRT3-dependent manner in radiation-induced brain injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.