Abstract

AbstractA solid‐state dye‐sensitized solar cell (ssDSSC) with 7.4% efficiency at 100 mW/cm2 is reported. This efficiency is one of the highest observed for N719 dye. High performance is achieved via a honeycomb‐like, organized mesoporous TiO2 photoanode with dual pores, high porosity, good interconnectivity, and excellent light scattering properties. The TiO2 photoanodes are prepared without any TiCl4 treatment via a one‐step, direct self‐assembly of hydrophilically preformed TiO2 nanocrystals and poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer as a titania source and a structure‐directing agent, respectively. Upon controlling the secondary forces between the polymer/TiO2 hybrid and the solvent by varying the amounts of HCl/H2O mixture or toluene, honeycomb‐like structures are generated to improve light scattering properties. Such multifunctional nanostructures with dual pores provide good pore‐filling of solid polymer electrolyte with large volume, enhanced light harvesting and reduced charge recombination, as confirmed by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.