Abstract

Nowadays, the problem posed by electromagnetic wave pollution to electronic devices and biological systems is of serious concern. To create a microwave absorber, component and structural modulation is crucial. Biomass-derived porous carbon is a potential material for microwave absorption applications due to the characteristics of lightweight, high specific surface area, and significant dielectric loss. In this study, by examining the impact of various KOH concentrations on the pore structure, bamboo powders with an 80-mesh size were used as a raw material to create honeycomb-like bamboo powders-derived porous carbon (BPDPC) materials. The activation mechanism of the BPDPC material is also explained. Based on the electromagnetic parameters, the sample BPDPC-4 impregnated with 4 mol/L KOH has a maximum effective absorption bandwidth (RL ≤ −10 dB) of 4.76 GHz at a matching thickness of 2.0 mm, covering 11.54–16.30 GHz and a minimum reflection loss (RLmin) of −40.99 dB at a matching thickness of 2.2 mm at 5 wt% ultra-low filler loading. Due to polarization loss, conduction loss, and the mutually beneficial effects of multiple electromagnetic wave reflection and scattering, the superior wave absorption performance is explained. This work also serves as a reference for investigating porous carbon generated from biomass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call