Abstract

Kitaev quantum spin liquid, massively quantum entangled states, is so scarce in nature that searching for new candidate systems remains a great challenge. Honeycomb heterostructure could be a promising route to realize and utilize such an exotic quantum phase by providing additional controllability of Hamiltonian and device compatibility, respectively. Here, we provide epitaxial honeycomb oxide thin film Na3Co2SbO6, a candidate of Kitaev quantum spin liquid proposed recently. We found a spin glass and antiferromagnetic ground states depending on Na stoichiometry, signifying not only the importance of Na vacancy control but also strong frustration in Na3Co2SbO6. Despite its classical ground state, the field-dependent magnetic susceptibility shows remarkable scaling collapse with a single critical exponent, which can be interpreted as evidence of quantum criticality. Its electronic ground state and derived spin Hamiltonian from spectroscopies are consistent with the predicted Kitaev model. Our work provides a unique route to the realization and utilization of Kitaev quantum spin liquid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call